
References and
multidimensional data

Simon Prochnik, Dave Messina, Lincoln Stein, Steve Rozen
PfB 2011

1Friday, October 21, 2011

What good are references?

Sometimes you need a more complex data structure
than a list.

What if you want to keep together several related
pieces of information?

Gene Sequence Organism

HOXB2 ATCAGCAATATACAATTATAAAGGCCTAAATTTAAAA mouse
HDAC1 GAGCGGAGCCGCGGGCGGGAGGGCGGACGGAC human

2Friday, October 21, 2011

What is a reference?

Well first, what is a variable?

A variable is a labeled memory address that
holds a value. The location's label is the name
of the variable.

$x=1; really means 1

0x84048ec

SCALAR x:

hexadecimal
memory
location

3Friday, October 21, 2011

What is a list?

@y = (1, ‘a’, 23);

really means

1 ‘a’ 23

0x82056b4

ARRAY y:

4Friday, October 21, 2011

A variable is a labeled memory address.

When we read the contents of the variable, we
are reading the contents of the memory
address.

0x82056b4

ARRAY y: 1 ‘a’ 23

5Friday, October 21, 2011

So, what is a reference?

A reference is a variable that contains the
memory address of some data.

It does not contain the data itself. It contains
the memory address where some data is
stored.

6Friday, October 21, 2011

Making a reference to an array

We can create a reference to named variable
@y this way:

0x82056b4

y:

ref_to_y: 0x82056b4

1 ‘a’ 23

SCALAR

ARRAY

7Friday, October 21, 2011

Printing a reference

If we try to print out $ref_to_y, we see
the raw memory address:

print $ref_to_y,"\n";
ARRAY(0x82056b4)

ref_to_y: 0x82056b4SCALAR

8Friday, October 21, 2011

To see the contents of what $ref_to_y points to,
we have to dereference it:

print join ' ',@{$ref_to_y};
1 a 23

0x82056b4

y:

ref_to_y: 0x82056b4

1 ‘a’ 23

SCALAR

ARRAY

9Friday, October 21, 2011

You can create references to scalars, arrays and
hashes

dereference your references:
$count_copy = ${$scalar_ref};
@array_copy = @{$array_ref};
%hash_copy = %{$hash_ref};

create some references
$scalar_ref = \$count;
$array_ref = \@array;
$hash_ref = \%hash;

To dereference a reference, place the
appropriate symbol ($, @, %) in front of the
reference:

10Friday, October 21, 2011

A reference is a pointer to the data. It isn't a copy of
the data.

When you make a reference to a variable, you have
only created another way to get at the data.

There is still only one copy of the data.

@y = (1,'a',23);
$ref_to_y = \@y;
print join ' ',@{$ref_to_y};
1 a 23

push @{$ref_to_y},'new1','new2';

print join ' ',@y;
1 a 23 new1 new2

References are pointers

11Friday, October 21, 2011

@y = (1,'a',23);
@z = @y;
push @y,'new1','new2';

print join ' ',@y;
1 a 23 new1 new2

print join ' ',@z;
1 a 23

This is in contrast to doing a direct copy from
one variable to another, which creates a new
data structure in a new memory location.

12Friday, October 21, 2011

If you have a reference to an array or a
hash, you can access any element.

$value = $y[2];

$value = ${$ref_to_y}[2];

${$ref_to_y}[2] = 'new';
print join ' ',@y;
1 a new

directly access the 3rd
element in @y

dereference the
reference, then
access the 3rd
element in @y

change the value of the
3rd element in @y

13Friday, October 21, 2011

%z = (‘dog’ => 'animal',
 ‘potato’ => 'vegetable',
 ‘quartz’ => 'mineral',
 ‘tomato’ => 'vegetable');

$ref_to_z = \%z;

$value = $z{‘dog’};

$value = ${$ref_to_z}{‘dog’};

${$ref_to_z}{‘tomato’} = 'fruit';
print join ' ', values %z;
animal vegetable mineral fruit

directly access the value
associated with the key
‘dog’ in the hash %z

dereference the
reference, then get the
value associated with the
key ‘dog’ in the hash %z

change the value
associated with the key
‘tomato’ in the hash %z

14Friday, October 21, 2011

Anonymous Hashes and Arrays

You will not usually make references to existing
variables. Instead you will create anonymous hashes and
arrays. These have a memory location, but no symbol or
name, i.e. you can't write @my_data. The reference is

the only way to address them.

To create an anonymous array use the form:
$ref_to_arry = ['item1','item2'...]

To create an anonymous hash, use the form:
$ref_to_hash =

{key1=>'value1',key2=>'value2',...}

Remember
[] goes with arrays
$a[0] etc and
 { } goes with

hashes $hash
{$key} etc

15Friday, October 21, 2011

$y_gene_families = ['DAZ', 'TSPY', 'RBMY', 'CDY1',
'CDY2'];

$y_gene_family_counts = { 'DAZ' => 4,
 'TSPY' => 20,
 'RBMY' => 10,
 'CDY2' => 2 };

$third_item_of_arry = $y_gene_families->[2];
$daz_count = $y_gene_family_counts->{DAZ};

$y_gene_families gets (i.e. is assigned) a reference to an
array, and $y_gene_family_counts gets a reference to a

hash.

16Friday, October 21, 2011

Multidimensional Data: Making a Hash of Hashes

The beauty of anonymous arrays and hashes is that you can nest them:

my %y_gene_data = (‘DAZ’ => {‘family_size’ => 4,
 ‘description’ => 'deleted in azoospermia' },
 ‘TSPY’ => {‘family_size’ => 20,
 ‘description’ => 'testis specific protein Y-
linked' },
 ‘RBMY’ => {‘family_size’ => 10,
 ‘description’ => 'RNA-binding motif Y'},
 ‘CDY2’ => {‘family_size’ => 2,
 ‘description’ => 'chromodomain protein, Y-linked' }
);

what is the size of the RBMY family?
my $size = $y_gene_data{‘RBMY’}{‘family_size’};

what is the description of TSPY?
my $desc = $y_gene_data{‘TSPY’}{‘description’};

17Friday, October 21, 2011

Multidimensional Data: Making an Array of Arrays

my @spotarray = (
 [0.124, 43.2, 0.102, 80.4],
 [0.113, 60.7, 0.091, 22.6],
 [0.084, 112.2, 0.144, 35.3]
);
my $cell_1_0 = $spotarray[1][0];
print $cell_1_0;

0.113

18Friday, October 21, 2011

Examining References

Inside a Perl script, the ref function tells you what kind
of value a reference points to:

print ref($y_gene_data), "\n";
HASH

print ref($spotarray), "\n";
ARRAY

$x = 1;
print ref($x), "\n";
(empty string)

19Friday, October 21, 2011

Examining complex data structures in the debugger

Inside the Perl debugger, the "x" command will pretty-print the
contents of a complex reference:

DB<3> x $y_gene_data
0 HASH(0x8404bb0)
 'CDY2' => HASH(0x8404b80)
 'description' => 'chromodomain protein, Y-linked'
 'family_size' => 2
 'DAZ' => HASH(0x84047fc)
 'description' => 'deleted in azoospermia'
 'family_size' => 4
 'RBMY' => HASH(0x8404b50)
 'description' => 'RNA-binding motif Y'
 'family_size' => 10
 'TSPY' => HASH(0x8404b20)
 'description' => 'testis specific protein Y-linked'
 'family_size' => 20

20Friday, October 21, 2011

Scripting Example: Creating a Hash of Hashes

We are presented with a table of sequences in the following format:
the ID of the sequence, followed by a tab, followed by the sequence
itself.

2L52.1 atgtcaatggtaagaaatgtatcaaatcagagcgaaaaattggaagtaag...
4R79.2 tcaaatacagcaccagctcctttttttatagttcgaattaatgtccaact...
AC3.1 atggctcaaactttactatcacgtcatttccgtggtgtcaactgttattt...
...

For each sequence calculate the length of the sequence and the count
for each nucleotide. Store the results into hash of hashes in which the
outer hash's key is the ID of the sequence, and the inner hashes' keys
are the names and counts of each nucleotide.

21Friday, October 21, 2011

#!/usr/bin/perl -w

use strict;

tabulate nucleotide counts, store into %sequences

my %seqs; # initialize hash
while (my $line = <>) {
 chomp $line;
 my ($id,$sequence) = split "\t",$line;
 my @nucleotides = split '', $sequence; # array of base pairs
 foreach my $n (@nucleotides) {
 $seqs{$id}{$n}++; # count nucleotides and keep tally
 }
}

print table of results
print join("\t",'id','a','c','g','t'),"\n";

foreach my $id (sort keys %seqs) {
 print join("\t",$id,
 $seqs{$id}{a},
 $seqs{$id}{c},
 $seqs{$id}{g},
 $seqs{$id}{t},
),"\n";
}

22Friday, October 21, 2011

The output will look something like this:

id a! c! g! t
2L52.1! 23! 4! 12 11
4R79.2! 15! 12 ! 5! 18
AC3.1! 11! 11! 8! 20
...

23Friday, October 21, 2011

